492 research outputs found

    Prevalence, Predictors and Prognosis of Post-Stroke Hyperglycaemia in Acute Stroke Trials: Individual Patient Data Pooled Analysis from the Virtual International Stroke Trials Archive (VISTA)

    Get PDF
    <br>Background: Post-stroke hyperglycaemia (PSH) is associated with higher mortality and dependence, but further data on predictors of PSH and its evolution over time are required. We examined the prevalence, predictors, and prognosis of acute PSH using data from well-characterised clinical trials in the VISTA database.</br> <br>Methods: Data were extracted for individual participants enrolled <24 h after stroke with ≥1 blood glucose readings documented. PSH was defined as glucose >7.0 mmol/l. Outcome measures were: (1) prevalence of PSH; (2) predictors of PSH by binary logistic regression; (3) mortality, and (4) favourable functional outcome [modified Rankin Scale (mRS) score <2] at day 90.</br> <br>Results: For 2,649 subjects treated at a median 5.5 h after admission, PSH was present in 1,126 (42.6%, 95% CI 40.7–44.5) on admission and within the first 48 h in 1,421 (53.7%, 95% CI 51.8–55.6). PSH developed between 24 and 48 h in 19.4% (95% CI 17.5–21.4) of initially normoglycaemic subjects. Admission and 48-hour PSH were predicted predominantly by a history of diabetes (for admission PSH: OR 7.40, 95% CI 5.60–9.79) and less clearly by stroke severity. Favourable outcome (mRS <2) at day 90 was less likely with PSH within the first 48 h, advanced age, and higher NIHSS score, and more likely with recombinant tissue plasminogen activator treatment.</br> <br>Conclusions: Over 40% of ischaemic stroke patients are hyperglycaemic on admission, and 20% of those who are initially normoglycaemic develop hyperglycaemia within 48 h. Diabetes is the strongest predictor of acute hyperglycaemia. Hyperglycaemia within the first 48 h is independently associated with higher mortality and poorer functional outcome, with an absolute increase of 12.9%.</br&gt

    Agile methods in biomedical software development: a multi-site experience report

    Get PDF
    BACKGROUND: Agile is an iterative approach to software development that relies on strong collaboration and automation to keep pace with dynamic environments. We have successfully used agile development approaches to create and maintain biomedical software, including software for bioinformatics. This paper reports on a qualitative study of our experiences using these methods. RESULTS: We have found that agile methods are well suited to the exploratory and iterative nature of scientific inquiry. They provide a robust framework for reproducing scientific results and for developing clinical support systems. The agile development approach also provides a model for collaboration between software engineers and researchers. We present our experience using agile methodologies in projects at six different biomedical software development organizations. The organizations include academic, commercial and government development teams, and included both bioinformatics and clinical support applications. We found that agile practices were a match for the needs of our biomedical projects and contributed to the success of our organizations. CONCLUSION: We found that the agile development approach was a good fit for our organizations, and that these practices should be applicable and valuable to other biomedical software development efforts. Although we found differences in how agile methods were used, we were also able to identify a set of core practices that were common to all of the groups, and that could be a focus for others seeking to adopt these methods

    Long-Wavelength Instability in Marangoni Convection

    Get PDF
    Our experiments in thin liquid layers (approximately 0.1 mm thick) heated from below reveal a well-defined long-wavelength instability: at a critical temperature difference across the layer, the depth of the layer in the center of the cell spontaneously decreases until the liquid-air interface ruptures and a dry spot forms. The onset of this critical instability occurs at a temperature difference across the liquid layer that is 35% smaller than that predicted in earlier theoretical studies of a single layer model. Our analysis of a two-layer model yields predictions in accord with the observations for liquid layer depths greater than or equal to 0.15 mm, but for smaller depths there is an increasing difference between our predictions and observations (the difference is 25% for a layer 0.06 mm thick). In microgravity environments the long-wavelength instability observed in our terrestrial experiments is expected to replace cellular convection as the primary instability in thick as well as thin liquid layers heated quasistatically from below

    Experimental Control of Thermocapillary Convection in a Liquid Bridge

    Get PDF
    We demonstrate the stabilization of an isolated unstable periodic orbit in a liquid bridge convection experiment. A model independent, nonlinear control algorithm uses temperature measurements near the liquid interface to compute control perturbations which are applied by a thermoelectric element. The algorithm employs a time series reconstruction of a nonlinear control surface in a high dimensional phase space to alter the system dynamics

    Imaging Inter-Edge State Scattering Centers in the Quantum Hall Regime

    Full text link
    We use an atomic force microscope tip as a local gate to study the scattering between edge channels in a 2D electron gas in the quantum Hall regime. The scattering is dominated by individual, microscopic scattering centers, which we directly image here for the first time. The tip voltage dependence of the scattering indicates that tunneling occurs through weak links and localized states.Comment: 4 pages, 5 figure

    A Detailed Observational Analysis of V1324 Sco, the Most Gamma-Ray Luminous Classical Nova to Date

    Full text link
    It has recently been discovered that some, if not all, classical novae emit GeV gamma rays during outburst, but the mechanisms involved in the production of the gamma rays are still not well understood. We present here a comprehensive multi-wavelength dataset---from radio to X-rays---for the most gamma-ray luminous classical nova to-date, V1324 Sco. Using this dataset, we show that V1324 Sco is a canonical dusty Fe-II type nova, with a maximum ejecta velocity of 2600 km s−1^{-1} and an ejecta mass of few ×10−5\times 10^{-5} M⊙_{\odot}. There is also evidence for complex shock interactions, including a double-peaked radio light curve which shows high brightness temperatures at early times. To explore why V1324~Sco was so gamma-ray luminous, we present a model of the nova ejecta featuring strong internal shocks, and find that higher gamma-ray luminosities result from higher ejecta velocities and/or mass-loss rates. Comparison of V1324~Sco with other gamma-ray detected novae does not show clear signatures of either, and we conclude that a larger sample of similarly well-observed novae is needed to understand the origin and variation of gamma rays in novae.Comment: 26 pages, 13 figure

    Scanned Potential Microscopy of Edge and Bulk Currents in the Quantum Hall Regime

    Full text link
    Using an atomic force microscope as a local voltmeter, we measure the Hall voltage profile in a 2D electron gas in the quantum Hall (QH) regime. We observe a linear profile in the bulk of the sample in the transition regions between QH plateaus and a distinctly nonlinear profile on the plateaus. In addition, localized voltage drops are observed at the sample edges in the transition regions. We interpret these results in terms of theories of edge and bulk currents in the QH regime.Comment: 4 pages, 5 figure

    Grazing cattle exposure to neighbouring herds and badgers in relation to bovine tuberculosis risk

    Get PDF
    Publication history: Accepted - 28 September 2020; Published online - 30 September 2020.Bovine tuberculosis (bTB) can be spread between and among cattle and wildlife hosts e.g. European badger (Meles meles). The majority of cattle in the UK and Ireland are grazed during the summer, potentially exposing them to Mycobacterium bovis. 18 farms were surveyed (39% dairy, 61% beef; fields n = 697) for one grazing season (May-November 2016, n = 148,461 field days) to quantify the co-occurrence of cattle with badger setts and latrines and adjacency to neighbouring cattle herds. 3% (n = 24) of the fields had a badger sett or latrine recorded, dairy cattle were significantly more likely to co-occur with badger setts and latrines than beef cattle. Most farms (89%) grazed cattle adjacent to a neighbouring herd, which accounted for 18% of the grazing season. Potential exposure to neighbouring herds did not differ between production systems but did vary between life stages. A significant positive association between the proportion of time cattle spent grazing fields with setts present and the historic 1-, 3- and 5- year bTB status (p = 0.007, p = 0.013 and p = 0.013 respectively) was found. However, when cattle were grazed in fields with latrines, a significant negative association was found between the proportion of time cattle spent grazing fields with latrines present and the historic 3- and 5- year bTB status (p = 0.033 and p = 0.012 respectively). Historic bTB status and percentage of days spent beside a neighbouring herd was unrelated. Idiosyncrasies at farm-level and between risk factors indicated that individual farm assessments would be beneficial to understand potential exposure risk.This research was funded as part of a PhD studentship by the Department of Agriculture, Environment and Rural Affair
    • …
    corecore